metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua(2,2'-bipyridine-5,5'-dicarboxylato- $\kappa^2 N, N'$)(ethylenediamine- $\kappa^2 N, N'$)copper(II) 2.5-hydrate

Mohammad Yousefi,^a Aida Khalighi,^a Nasim Tadayon Pour,^a Vahid Amani^a* and Hamid Reza Khavasi^b

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and ^bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran Correspondence e-mail: v_amani2002@yahoo.com

Received 21 August 2008; accepted 10 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.121; data-to-parameter ratio = 16.2.

In the molecule of the title compound, $[Cu(C_{12}H_6N_2O_4)-(C_2H_8N_2)(H_2O)_2]\cdot 2.5H_2O$, the Cu^{II} atom is six-coordinated in a distorted octahedral configuration by two N atoms from a 2,2'-bipyridine-5,5'-dicarboxylate anion, two N atoms from ethylenediamine and two O atoms from two water molecules. There are also two and a half water molecules in the asymmetric unit. The planar five-membered ring is nearly coplanar with the adjacent pyridine rings, while the other five-membered ring adopts a twisted conformation, probably due to hydrogen bonding. In the crystal structure, intra- and intermolecular N-H···O and O-H···O hydrogen bonds link the molecules.

Related literature

For complexes involving 2,2'-bipyridine-5,5'-dicarboxylate anions, see: Min *et al.* (2002); Geary *et al.* (2003); Hafizovic *et al.* (2006); Schoknechta & Kempe (2004); Matthews *et al.* (2004).

Experimental

Crystal data	
$[Cu(C_{12}H_6N_2O_4)(C_2H_8N_2)-$	b = 7.2481 (14) Å
$(H_2O)_2] \cdot 2.5H_2O$	c = 18.421 (4) Å
$M_r = 446.92$	$\beta = 120.05 \ (3)^{\circ}$
Monoclinic, C2/c	$V = 3667.1 (17) \text{ Å}^3$
a = 31.730 (6) Å	Z = 8

Mo	Κα	r	adiation
$\mu =$	1.2	5	mm^{-1}

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\rm min} = 0.770, \ T_{\rm max} = 0.923$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$vR(F^2) = 0.120$	independent and constrained
S = 1.10	refinement
1887 reflections	$\Delta \rho_{\rm max} = 1.71 \text{ e } \text{\AA}^{-3}$
301 parameters	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

T = 298 (2) K 0.50 × 0.18 × 0.07 mm

 $R_{\rm int} = 0.043$

13747 measured reflections 4887 independent reflections 4221 reflections with $I > 2\sigma(I)$

 Table 1

 Selected geometric parameters (Å, °).

O5-Cu1	2.563 (3)	N2-Cu1	2.0225 (19)
O6-Cu1	2.499 (3)	N3-Cu1	2.003 (2)
N1-Cu1	2.018 (2)	N4-Cu1	2.015 (2)
O5-Cu1-O6	174.49 (10)	O6-Cu1-N4	94.56 (11)
O5-Cu1-N1	86.22 (11)	N3-Cu1-N4	85.24 (9)
O5-Cu1-N2	88.78 (10)	N3-Cu1-N1	97.29 (9)
O5-Cu1-N3	90.26 (10)	N4-Cu1-N1	175.34 (9)
O5-Cu1-N4	89.86 (11)	N3-Cu1-N2	177.97 (9)
O6-Cu1-N1	89.50 (10)	N4-Cu1-N2	96.54 (8)
O6-Cu1-N2	93.97 (10)	N1-Cu1-N2	80.87 (8)
O6-Cu1-N3	86.84 (10)		

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A···O2 ⁱ	0.84 (3)	2.11 (3)	2.881 (3)	153 (4)
$N3-H3B\cdots O3^{ii}$	0.86 (4)	2.21 (4)	3.031 (3)	159 (4)
$N4 - H4B \cdots O8$	0.87 (3)	2.20 (3)	3.054 (3)	171 (4)
N4-H4C···O9 ⁱⁱⁱ	0.89 (4)	2.23 (4)	3.069 (4)	158 (4)
$O5-H5B\cdots O7^{iv}$	0.86 (6)	1.97 (6)	2.807 (4)	164 (5)
$O5-H5C\cdots O9^{ii}$	0.72 (7)	2.08 (6)	2.779 (5)	165 (5)
$O6-H6A\cdotsO1^{i}$	0.74 (5)	1.99 (5)	2.726 (4)	171 (4)
$O6-H6B\cdots O3^{iii}$	0.95 (7)	2.51 (7)	3.267 (4)	136 (5)
$O7 - H7A \cdots O2$	0.82 (6)	2.00 (6)	2.776 (5)	158 (5)
$O7 - H7B \cdots O4^{v}$	0.78 (7)	2.11 (7)	2.827 (4)	153 (7)
$O8-H8B\cdots O7^{iv}$	0.76 (6)	2.22 (6)	2.969 (5)	178 (8)
$O9-H9B\cdots O4^{vi}$	0.86 (6)	1.96 (5)	2.744 (4)	152 (5)
O9−H9C···O3	0.97 (6)	1.74 (6)	2.706 (3)	169 (4)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, -y + 2, $z + \frac{1}{2}$; (iii) x, -y + 1, $z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}$, $-y + \frac{5}{2}$, -z + 1; (v) $-x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1; (vi) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2516).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Geary, E. A. M., Hirata, N., Clifford, J., Durrant, J. R., Parsons, S., Dawson, A., Yellowlees, L. J. & Robertson, N. (2003). *Dalton Trans.* pp. 3757–3762.

Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). *Acta Cryst.* E62, m414–m416. Matthews, C. J., Elsegood, M. R. J., Bernardinelli, G., Clegg, W. & Williams, A. F. (2004). *Dalton Trans.* pp. 492–497.

Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143–146.
 Schoknechta, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377–1379.
 Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1284-m1285 [doi:10.1107/S1600536808029061]

Diaqua(2,2'-bipyridine-5,5'-dicarboxylato- $\kappa^2 N, N'$)(ethylenediamine- $\kappa^2 N, N'$)copper(II) 2.5-hy-drate

M. Yousefi, A. Khalighi, N. Tadayon Pour, V. Amani and H. R. Khavasi

Comment

2,2'-Bipyridine-5,5'-dicarboxylic acid (BPDCH₂) is a good bridging ligand, and numerous complexes with BPDCH₂ anions have been prepared, such as that of cobalt (Min *et al.*, 2002), platinum (Geary *et al.*, 2003; Hafizovic *et al.*, 2006), neodym-inum (Schoknechta & Kempe, 2004), ruthenium and rhodium (Matthews *et al.*, 2004) complexes. For further investigation of 2,2'-bipyridine-5,5'-dicarboxylic acid, we synthesized the title compound and report herein its crystal structure.

In the title compound, (Fig. 1), the Cu^{II} atom is six-coordinated in a distorted octahedral configuration by two N atoms from 2,2'-bipyridine-5,5'-dicarboxylate anion, two N atoms from ethylenediamine and two O atoms from two water molecules (Table 1). There are also two and a half water molecules in the asymmetric unit. Rings A (N1/C1/C2/C4–C6), B (N2/C7–C10/C12) and C (Cu1/N1/N2/C6/C7) are, of course, planar, and the dihedral angles between them are A/B = 1.43 (3)°, A/C = 2.09 (3)° and B/C = 2.45 (3)°. So, they are nearly coplanar, while ring D (Cu1/N3/N4/C13/C14) adopts twisted conformation, probably due to the hydrogen bondings.

In the crystal structure, intra- and intermolecular N—H…O and O—H…O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, ethylenediamine (0.15 g, 2.50 mmol) was added to a suspension of 2,2'-bipyridine-5,5'-dicarboxylic acid (0.21 g, 0.83 mmol) in water (10 ml) and the resulting colorless solution was added to $CuCl_2.2H_2O$ (0.14 g, 0.83 mmol) in water (10 ml). The resulting blue solution was stirred at 323 K for 15 min, and then was left to evaporate slowly at room temperature. After one week, blue plate crystals of the title compound were isolated (yield; 0.26 g, 70.01%, m.p. 488 K).

Refinement

H3A, H3B, H4B, H4C (for NH₂) and H5B, H5C, H6A, H6B, H7A, H7B, H8B, H9B, H9C (for H₂O) atoms were located in difference syntheses and refined isotropically [N—H = 0.85 (4)–0.89 (4) Å and $U_{iso}(H) = 0.035$ (8)–0.043 (9) Å²; O—H = 0.72 (5)–0.97 (6) Å and $U_{iso}(H) = 0.041$ (10)–0.11 (2) Å²]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. **Figures**

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

$Diaqua (2,2'-bipyridine-5,5'-dicarboxylato-k^2N, N') (ethylenediamine-k^2N, N') copper (II) \ 2.5-hydrate$

Crystal data	
$[Cu(C_{12}H_6N_2O_4)(C_2H_8N_2)(H_2O)_2] \cdot 2.5H_2O$	$F_{000} = 1856$
$M_r = 446.92$	$D_{\rm x} = 1.619 { m Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1976 reflections
a = 31.730 (6) Å	$\theta = 2.2 - 29.3^{\circ}$
b = 7.2481 (14) Å	$\mu = 1.25 \text{ mm}^{-1}$
c = 18.421 (4) Å	T = 298 (2) K
$\beta = 120.05 \ (3)^{\circ}$	Plate, blue
$V = 3667.1 (17) \text{ Å}^3$	$0.50\times0.18\times0.07~mm$
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer	4887 independent reflections
Radiation source: fine-focus sealed tube	4221 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 298(2) K	$\theta_{\text{max}} = 29.3^{\circ}$
φ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$h = -43 \rightarrow 43$
$T_{\min} = 0.770, T_{\max} = 0.923$	$k = -9 \rightarrow 9$
13747 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.120$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0582P)^{2} + 5.7488P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.015$
4887 reflections	$\Delta \rho_{max} = 1.71 \text{ e } \text{\AA}^{-3}$
301 parameters	$\Delta \rho_{min} = -0.64 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.129145 (10)	0.87872 (5)	0.482858 (17)	0.02876 (10)
O1	0.28103 (9)	1.1389 (6)	0.78353 (15)	0.0769 (10)
O2	0.33829 (8)	1.2562 (4)	0.76199 (13)	0.0501 (5)
O3	0.09405 (8)	0.6749 (3)	0.10781 (12)	0.0447 (5)
O4	0.05397 (7)	0.5529 (3)	0.16672 (12)	0.0410 (4)
O5	0.10527 (11)	1.2087 (4)	0.42720 (19)	0.0570 (6)
H5B	0.0955 (18)	1.190 (7)	0.375 (4)	0.078 (15)*
H5C	0.0838 (19)	1.250 (8)	0.424 (3)	0.081 (18)*
O6	0.15861 (10)	0.5703 (4)	0.55005 (19)	0.0513 (6)
H6A	0.1748 (14)	0.577 (5)	0.596 (3)	0.041 (10)*
H6B	0.133 (2)	0.484 (9)	0.535 (4)	0.101 (19)*
O7	0.41911 (13)	1.2811 (5)	0.74176 (19)	0.0621 (7)
H7A	0.3946 (18)	1.303 (7)	0.744 (3)	0.062 (13)*
H7B	0.434 (2)	1.192 (10)	0.764 (4)	0.11 (2)*
O8	0.0000	0.9968 (6)	0.2500	0.0568 (9)
H8B	0.0210 (17)	1.050 (7)	0.252 (4)	0.066 (15)*
O9	0.03530 (9)	0.5945 (4)	-0.05647 (15)	0.0511 (6)
H9B	0.0049 (17)	0.569 (6)	-0.080 (3)	0.063 (12)*
Н9С	0.056 (2)	0.608 (7)	0.004 (4)	0.097 (17)*
N1	0.19871 (7)	0.9679 (3)	0.53881 (12)	0.0270 (4)
N2	0.14333 (7)	0.8272 (3)	0.38928 (12)	0.0252 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.11694 (8)	0.9366 (3)	0.57706 (13)	0.0274 (4)
0.1385 (13)	0.896 (5)	0.624 (2)	0.043 (9)*
0.1155 (12)	1.055 (5)	0.581 (2)	0.035 (8)*
0.05847 (7)	0.8043 (3)	0.41939 (14)	0.0300 (4)
0.0422 (13)	0.848 (5)	0.369 (2)	0.037 (8)*
0.0557 (12)	0.682 (5)	0.418 (2)	0.037 (8)*
0.22492 (9)	1.0341 (4)	0.61691 (15)	0.0331 (5)
0.2111	1.0336	0.6511	0.040*
0.27180 (8)	1.1035 (3)	0.64927 (15)	0.0298 (5)
0.29927 (10)	1.1729 (4)	0.73932 (16)	0.0384 (6)
0.29229 (8)	1.0998 (3)	0.59865 (15)	0.0290 (5)
0.3235	1.1457	0.6183	0.035*
0.26621 (8)	1.0276 (3)	0.51827 (14)	0.0271 (4)
0.2800	1.0220	0.4841	0.033*
0.21916 (8)	0.9637 (3)	0.48967 (13)	0.0226 (4)
0.18787 (8)	0.8846 (3)	0.40512 (13)	0.0223 (4)
0.20220 (8)	0.8669 (3)	0.34572 (14)	0.0279 (4)
0.2328	0.9074	0.3573	0.033*
0.17036 (9)	0.7882 (3)	0.26864 (14)	0.0284 (5)
0.1795	0.7759	0.2281	0.034*
0.12496 (8)	0.7278 (3)	0.25224 (14)	0.0257 (4)
0.08798 (9)	0.6439 (3)	0.16880 (14)	0.0293 (5)
0.11346 (8)	0.7489 (4)	0.31536 (14)	0.0287 (5)
0.0834	0.7063	0.3056	0.034*
0.06969 (9)	0.8537 (4)	0.55719 (16)	0.0340 (5)
0.0571	0.9136	0.5895	0.041*
0.0738	0.7234	0.5711	0.041*
0.03498 (9)	0.8794 (4)	0.46480 (16)	0.0332 (5)
0.0047	0.8148	0.4482	0.040*
0.0278	1.0093	0.4520	0.040*
	0.11694 (8) 0.1385 (13) 0.1155 (12) 0.05847 (7) 0.0422 (13) 0.0557 (12) 0.22492 (9) 0.2111 0.27180 (8) 0.29927 (10) 0.29927 (10) 0.29229 (8) 0.3235 0.26621 (8) 0.2800 0.21916 (8) 0.20220 (8) 0.20220 (8) 0.2328 0.17036 (9) 0.1795 0.12496 (8) 0.08798 (9) 0.11346 (8) 0.0834 0.06969 (9) 0.0571 0.0738 0.03498 (9) 0.0047 0.0278	0.11694 (8)0.9366 (3)0.1385 (13)0.896 (5)0.1155 (12)1.055 (5)0.05847 (7)0.8043 (3)0.0422 (13)0.848 (5)0.0557 (12)0.682 (5)0.22492 (9)1.0341 (4)0.21111.03360.27180 (8)1.1035 (3)0.29927 (10)1.1729 (4)0.29229 (8)1.0998 (3)0.32351.14570.26621 (8)1.0276 (3)0.28001.02200.21916 (8)0.9637 (3)0.18787 (8)0.8846 (3)0.20220 (8)0.8669 (3)0.23280.90740.17036 (9)0.7882 (3)0.17950.77590.12496 (8)0.7278 (3)0.08798 (9)0.6439 (3)0.11346 (8)0.7489 (4)0.05710.91360.07380.72340.03498 (9)0.8794 (4)0.00470.81480.02781.0093	0.11694 (8)0.9366 (3)0.57706 (13)0.1385 (13)0.896 (5)0.624 (2)0.1155 (12)1.055 (5)0.581 (2)0.05847 (7)0.8043 (3)0.41939 (14)0.0422 (13)0.848 (5)0.369 (2)0.0557 (12)0.682 (5)0.418 (2)0.22492 (9)1.0341 (4)0.61691 (15)0.21111.03360.65110.27180 (8)1.1035 (3)0.64927 (15)0.2929 (8)1.0998 (3)0.59865 (15)0.32351.14570.61830.26621 (8)1.02200.48410.21916 (8)0.9637 (3)0.48967 (13)0.18787 (8)0.8846 (3)0.40512 (13)0.20220 (8)0.8669 (3)0.34572 (14)0.23280.90740.35730.17036 (9)0.77890.22810.17950.77590.22810.12496 (8)0.7278 (3)0.35660.06969 (9)0.8537 (4)0.31536 (14)0.08340.70630.30560.07380.72340.57110.03498 (9)0.8794 (4)0.46480 (16)0.00470.81480.44820.02781.00930.4520

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02016 (14)	0.04566 (19)	0.01986 (14)	-0.00232 (11)	0.00958 (11)	-0.00645 (12)
O1	0.0448 (13)	0.154 (3)	0.0339 (11)	-0.0239 (16)	0.0215 (10)	-0.0362 (16)
O2	0.0412 (11)	0.0628 (14)	0.0320 (10)	-0.0159 (10)	0.0077 (9)	-0.0168 (10)
O3	0.0551 (12)	0.0527 (12)	0.0221 (8)	-0.0170 (10)	0.0163 (8)	-0.0079 (8)
O4	0.0333 (9)	0.0507 (11)	0.0298 (9)	-0.0135 (8)	0.0090 (8)	-0.0066 (8)
O5	0.0548 (15)	0.0671 (17)	0.0513 (15)	0.0147 (13)	0.0281 (13)	0.0149 (13)
O6	0.0509 (14)	0.0504 (13)	0.0545 (15)	0.0021 (11)	0.0278 (13)	0.0043 (12)
O7	0.0718 (19)	0.0669 (18)	0.0573 (16)	0.0017 (15)	0.0396 (15)	0.0151 (14)
O8	0.054 (2)	0.057 (2)	0.0453 (19)	0.000	0.0144 (18)	0.000
O9	0.0465 (12)	0.0693 (16)	0.0318 (10)	-0.0222 (11)	0.0153 (9)	-0.0088 (10)
N1	0.0205 (8)	0.0369 (10)	0.0204 (8)	-0.0018 (7)	0.0079 (7)	-0.0056 (8)
N2	0.0213 (8)	0.0325 (10)	0.0206 (8)	-0.0014 (7)	0.0096 (7)	-0.0041 (7)
N3	0.0262 (9)	0.0355 (11)	0.0206 (9)	0.0039 (8)	0.0118 (8)	0.0020 (8)
N4	0.0237 (9)	0.0398 (12)	0.0253 (9)	-0.0018 (8)	0.0115 (8)	-0.0014 (9)

C1	0.0244 (10)	0.0483 (14)	0.0233 (10)	-0.0004 (10)	0.0095 (9)	-0.0095 (10)
C2	0.0249 (10)	0.0344 (12)	0.0219 (10)	0.0017 (9)	0.0056 (8)	-0.0048 (9)
C3	0.0298 (12)	0.0499 (15)	0.0248 (11)	0.0014 (11)	0.0058 (9)	-0.0130 (11)
C4	0.0240 (10)	0.0298 (11)	0.0262 (10)	-0.0037 (8)	0.0073 (8)	-0.0034 (9)
C5	0.0253 (10)	0.0309 (11)	0.0228 (10)	-0.0025 (8)	0.0103 (8)	-0.0013 (9)
C6	0.0226 (9)	0.0227 (10)	0.0197 (9)	0.0010 (8)	0.0085 (8)	-0.0014 (8)
C7	0.0218 (9)	0.0238 (9)	0.0194 (9)	0.0003 (8)	0.0088 (8)	0.0002 (8)
C8	0.0268 (10)	0.0336 (11)	0.0241 (10)	-0.0054 (9)	0.0133 (9)	-0.0024 (9)
C9	0.0325 (11)	0.0333 (12)	0.0211 (10)	-0.0023 (9)	0.0147 (9)	-0.0014 (9)
C10	0.0285 (10)	0.0266 (10)	0.0184 (9)	0.0006 (8)	0.0090 (8)	-0.0009 (8)
C11	0.0330 (11)	0.0280 (11)	0.0199 (9)	-0.0015 (9)	0.0079 (9)	-0.0029 (8)
C12	0.0236 (10)	0.0375 (12)	0.0230 (10)	-0.0036 (9)	0.0102 (8)	-0.0057 (9)
C13	0.0332 (12)	0.0447 (14)	0.0304 (12)	0.0028 (10)	0.0207 (10)	0.0034 (10)
C14	0.0238 (10)	0.0434 (13)	0.0333 (12)	0.0025 (10)	0.0150 (9)	0.0015 (11)

Geometric parameters (Å, °)

O5—Cu1	2.563 (3)	C4—C5	1.387 (3)
O5—H5B	0.86 (6)	C4—H4A	0.9300
O5—H5C	0.72 (5)	C5—C6	1.390 (3)
O6—Cu1	2.499 (3)	C5—H5A	0.9300
O6—H6A	0.74 (4)	C6—N1	1.353 (3)
O6—H6B	0.96 (6)	C6—C7	1.481 (3)
O7—H7A	0.81 (5)	C7—N2	1.357 (3)
O7—H7B	0.78 (7)	С7—С8	1.385 (3)
O8—H8B	0.76 (6)	C8—C9	1.388 (3)
О9—Н9В	0.86 (5)	C8—H8A	0.9300
О9—Н9С	0.97 (6)	C9—C10	1.386 (3)
N1—Cu1	2.018 (2)	С9—Н9А	0.9300
N2—Cu1	2.0225 (19)	C10-C12	1.390 (3)
N3—Cu1	2.003 (2)	C10—C11	1.518 (3)
N3—H3A	0.85 (4)	C11—O4	1.249 (3)
N3—H3B	0.86 (4)	C11—O3	1.252 (3)
N4—Cu1	2.015 (2)	C12—N2	1.335 (3)
N4—H4B	0.87 (4)	C12—H12	0.9300
N4—H4C	0.89 (4)	C13—N3	1.481 (3)
C1—N1	1.339 (3)	C13—C14	1.506 (4)
C1—C2	1.390 (3)	С13—Н13А	0.9700
С1—Н1	0.9300	С13—Н13В	0.9700
C2—C4	1.378 (3)	C14—N4	1.475 (3)
C2—C3	1.522 (3)	C14—H14A	0.9700
C3—O1	1.237 (4)	C14—H14B	0.9700
C3—O2	1.247 (4)		
O5—Cu1—O6	174.49 (10)	C4—C2—C1	118.0 (2)
O5—Cu1—N1	86.22 (11)	C4—C2—C3	122.5 (2)
O5—Cu1—N2	88.78 (10)	C1—C2—C3	119.5 (2)
O5—Cu1—N3	90.26 (10)	O1—C3—O2	126.1 (3)
O5—Cu1—N4	89.86 (11)	O1—C3—C2	116.8 (3)
O6—Cu1—N1	89.50 (10)	O2—C3—C2	117.1 (3)

O6—Cu1—N2	93.97 (10)	C2—C4—C5	119.9 (2)
O6—Cu1—N3	86.84 (10)	С2—С4—Н4А	120.1
O6—Cu1—N4	94.56 (11)	С5—С4—Н4А	120.1
N3—Cu1—N4	85.24 (9)	C4—C5—C6	118.9 (2)
N3—Cu1—N1	97.29 (9)	С4—С5—Н5А	120.5
N4—Cu1—N1	175.34 (9)	С6—С5—Н5А	120.5
N3—Cu1—N2	177.97 (9)	N1—C6—C5	121.5 (2)
N4—Cu1—N2	96.54 (8)	N1—C6—C7	114.76 (18)
N1—Cu1—N2	80.87 (8)	C5—C6—C7	123.7 (2)
H5B—O5—H5C	101 (5)	N2—C7—C8	121.3 (2)
H6A—O6—H6B	112 (5)	N2—C7—C6	115.00 (18)
H7A—O7—H7B	118 (6)	C8—C7—C6	123.65 (19)
Н9В—О9—Н9С	123 (4)	С7—С8—С9	119.2 (2)
Cu1—O5—H5B	100 (3)	С7—С8—Н8А	120.4
Cu1—O5—H5C	120 (5)	С9—С8—Н8А	120.4
H5B—O5—H5C	100 (6)	C10—C9—C8	119.8 (2)
Cu1—O6—H6B	113 (4)	С10—С9—Н9А	120.1
H6A—O6—H6B	112 (5)	С8—С9—Н9А	120.1
Cu1—O6—H6A	112 (3)	C9—C10—C12	117.5 (2)
C1—N1—C6	118.6 (2)	C9—C10—C11	122.6 (2)
C1—N1—Cu1	126.54 (17)	C12—C10—C11	119.8 (2)
C6—N1—Cu1	114.80 (14)	O4—C11—O3	125.9 (2)
C12—N2—C7	118.72 (19)	O4—C11—C10	117.5 (2)
C12—N2—Cu1	126.92 (16)	O3—C11—C10	116.7 (2)
C7—N2—Cu1	114.34 (15)	N2-C12-C10	123.4 (2)
C13—N3—Cu1	108.16 (16)	N2—C12—H12	118.3
C13—N3—H3A	108 (2)	C10-C12-H12	118.3
Cu1—N3—H3A	114 (2)	N3—C13—C14	107.8 (2)
C13—N3—H3B	110 (2)	N3—C13—H13A	110.1
Cu1—N3—H3B	108 (2)	C14—C13—H13A	110.1
H3A—N3—H3B	109 (3)	N3—C13—H13B	110.1
C14—N4—Cu1	107.68 (16)	C14—C13—H13B	110.1
C14—N4—H4B	106 (2)	H13A—C13—H13B	108.5
Cu1—N4—H4B	114 (2)	N4-C14-C13	107.7 (2)
C14—N4—H4C	108 (2)	N4—C14—H14A	110.2
Cu1—N4—H4C	110 (2)	C13—C14—H14A	110.2
H4B—N4—H4C	110 (3)	N4-C14-H14B	110.2
N1—C1—C2	123.1 (2)	C13—C14—H14B	110.2
N1—C1—H1	118.5	H14A—C14—H14B	108.5
C2—C1—H1	118.5		
C1—N1—Cu1—N3	2.7 (2)	N2—C7—C8—C9	-0.3 (4)
C6—N1—Cu1—N3	-175.05 (17)	C6—C7—C8—C9	179.0 (2)
C1—N1—Cu1—N2	-178.1 (2)	C7—C8—C9—C10	-0.2 (4)
C6—N1—Cu1—N2	4.10 (17)	C8—C9—C10—C12	-0.3 (4)
C12—N2—Cu1—N4	-6.3 (2)	C8—C9—C10—C11	178.8 (2)
C7—N2—Cu1—N4	171.90 (17)	C9—C10—C11—O4	162.4 (2)
C12—N2—Cu1—N1	177.6 (2)	C12-C10-C11-O4	-18.6 (3)
C7—N2—Cu1—N1	-4.19 (16)	C9—C10—C11—O3	-18.6 (4)
C13—N3—Cu1—N4	13.46 (17)	C12—C10—C11—O3	160.4 (2)

C13—N3—Cu1—N1	-170.47 (17)	C9-C10-C12-N2	1.5 (4)
C14—N4—Cu1—N3	15.41 (18)	C11-C10-C12-N2	-177.6 (2)
C14—N4—Cu1—N2	-163.62 (17)	N3-C13-C14-N4	53.5 (3)
N1—C1—C2—C4	-1.4 (4)	C2-C1-N1-C6	1.8 (4)
N1—C1—C2—C3	-178.9 (3)	C2-C1-N1-Cu1	-175.9 (2)
C4—C2—C3—O1	-167.1 (3)	C5—C6—N1—C1	-0.5 (4)
C1—C2—C3—O1	10.4 (4)	C7—C6—N1—C1	178.7 (2)
C4—C2—C3—O2	11.9 (4)	C5—C6—N1—Cu1	177.44 (18)
C1—C2—C3—O2	-170.6 (3)	C7—C6—N1—Cu1	-3.3 (3)
C1—C2—C4—C5	-0.3 (4)	C10-C12-N2-C7	-2.0 (4)
C3—C2—C4—C5	177.2 (2)	C10-C12-N2-Cu1	176.16 (18)
C2—C4—C5—C6	1.4 (4)	C8—C7—N2—C12	1.4 (3)
C4-C5-C6-N1	-1.1 (4)	C6—C7—N2—C12	-178.0 (2)
C4—C5—C6—C7	179.8 (2)	C8—C7—N2—Cu1	-177.01 (18)
N1—C6—C7—N2	-0.2 (3)	C6—C7—N2—Cu1	3.6 (2)
C5—C6—C7—N2	179.0 (2)	C14—C13—N3—Cu1	-39.3 (2)
N1—C6—C7—C8	-179.6 (2)	C13—C14—N4—Cu1	-40.8 (3)
C5—C6—C7—C8	-0.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3A····O2 ⁱ	0.84 (3)	2.11 (3)	2.881 (3)	153 (4)
N3—H3B···O3 ⁱⁱ	0.86 (4)	2.21 (4)	3.031 (3)	159 (4)
N4—H4B…O8	0.87 (3)	2.20 (3)	3.054 (3)	171 (4)
N4—H4C····O9 ⁱⁱⁱ	0.89 (4)	2.23 (4)	3.069 (4)	158 (4)
O5—H5B···O7 ^{iv}	0.86 (6)	1.97 (6)	2.807 (4)	164 (5)
O5—H5C···O9 ⁱⁱ	0.72 (7)	2.08 (6)	2.779 (5)	165 (5)
O6—H6A···O1 ⁱ	0.74 (5)	1.99 (5)	2.726 (4)	171 (4)
O6—H6B···O3 ⁱⁱⁱ	0.95 (7)	2.51 (7)	3.267 (4)	136 (5)
O7—H7A···O2	0.82 (6)	2.00 (6)	2.776 (5)	158 (5)
O7— $H7B$ ···O4 ^v	0.78 (7)	2.11 (7)	2.827 (4)	153 (7)
O8—H8B···O7 ^{iv}	0.76 (6)	2.22 (6)	2.969 (5)	178 (8)
O9—H9B···O4 ^{vi}	0.86 (6)	1.96 (5)	2.744 (4)	152 (5)
09—Н9С…О3	0.97 (6)	1.74 (6)	2.706 (3)	169 (4)

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) x, -y+2, z+1/2; (iii) x, -y+1, z+1/2; (iv) -x+1/2, -y+5/2, -z+1; (v) -x+1/2, -y+3/2, -z+1; (vi) -x, -y+1, -z.

